$$
\begin{aligned}
& \text { التحليل الرياضي1 } \\
& \text { لعام } \\
& \text { 2021-2020 } \\
& \text { المرحلة الثالثة - الكورس الاول } \\
& \text { كلية التربية للعلوم الصرفة } \\
& \text { قسم الرياضيات }
\end{aligned}
$$

د. نادية علي ناظم

LCH (1)

Axioms of real numbers
1.The axioms arithmetics
2. The axioms of ordered
3.The complete Axioms

* Let R be a real number and $a, b, c \in R$. Then
$A_{1}: \forall a, b, c \in R a+(b+c)=(a+b)+c$.
$A_{2}: a+b=b+a$
$A_{3}:$ for any $a \in R, \exists$! element $0 \in R$ s.t $a+(-a)=-a+a=0$
A_{4} : The exists an element $0 \in R, S . t$
$a+0=0+a=a$
Then $(R,+)$ is a commutative group.
$A_{5}: a .(b . c)=(a . b) . c$
$A_{6}: a . b=b . a$
$A_{7}: \exists$! Element in $R(1 \in R)$ set $a .1=1 . a=a$
$A_{8}: \forall a \in R, \exists!a^{-1} \in R$, s.t $a . a^{-1}=a^{-1} . a=1$ Form $\boldsymbol{A}_{\mathbf{5}} \rightarrow \boldsymbol{A}_{\mathbf{8}} \cdot(\boldsymbol{R},$.$) commutive ring$
$A_{9}: a .(b+c)=(a . b)+(a . c)$ $A_{1} \rightarrow A_{9}(R,+,$.$) Is a field$

Def:

* Subtraction $a-b=a+(-b), \forall a, b \in R$
* Division $\quad a \div b=a . b^{-1} \ni b \neq 0$

The Axioms of order:
$A_{10}: a \leq b$ or $b \leq a$
$A_{11}: a \leq b$ and $b \leq c \rightarrow a=b$
$A_{12}: a \leq b$ and $b \leq c \rightarrow a \leq c$
$A_{13}: a \leq b, c \in R \rightarrow a+c \leq b+c$
$A_{14}: a \leq b, c$ is not negative $\rightarrow a . c<-b . c$ $A_{1} \rightarrow A_{14},(R,+, ., \leq)$ order field.
Remark:

$$
\begin{aligned}
& R^{+}=\{x \in R ; x>0\} \\
& R^{-}=\{x \in R ; x<0\}
\end{aligned}
$$

Propositions: Let $(R,+,$.$) be a field, then prove the$ following

1. $\forall a, b, c \in R$, if $a+b=b+c$, then $a=c$
$2 . \forall a, b, c \in R$, if $a . b=c . b$, then $a=c$
2. $\forall a, b \in R$, prove that:

$$
\begin{aligned}
& \text { 1. }-(-a)=a \\
& \text { 2. }\left(a^{-1}\right)^{-1}=a \\
& \text { 3. }(-a)+(-b)=-(a+b) \\
& \text { 4. }(-a) . b=-a, b \\
& \text { 5.if } a . b=0 \text { then either } a=0 \text { or } b=0
\end{aligned}
$$

Proof (5):
Let $a \neq 0$, T.P $b=0$
Since $a \neq 0$, then $\exists a^{-1} \in R$ s.t $a . a^{-1}=1$ $a^{-1}(a . b)=0$
$\left(a^{-1} \cdot a\right) \cdot b=0$

1. $b=0 \rightarrow b=0$

Let $b \neq 0$, T.P $a=0$
Since $b \neq 0$, then $\exists b^{-1} \in R$ s.t $b . b^{-1}=1$
$(a . b) b^{-1}=0$
a. $\left(b . b^{-1}\right)=0$
$a .1=0 \rightarrow a=0$

Absolute Value:

let $a \in R$, the absolute value of a is:

$$
|a|=\left\{\begin{array}{cc}
a & \text { if } a>0 \\
0 & \text { if } a=0 \\
-a & \text { if } a<0
\end{array}\right.
$$

$|a|: R \rightarrow R^{+} \cup\{0\}$ is the function of absolute value.

Properties of absolute value.
Theorem: let a be a real number, then
$1 .|x|<a \leftrightarrow-a<x<a$

$$
\text { 2. }|X|>a \leftrightarrow x>a \text { or } x<-a
$$

Corollary: let $a \in R^{+}$and $b \in R$, then

1. $\mid x-b \leq a$ iff $b-a \leq x \leq b+a$
2. $|x-b| \geq a$ iff $x \geq b+a$ or $x \leq b-a$

Let $a, b \in R$ and k be areal number, then
$1 .|a| \geq 0$
2. $|a|=0$ iff $a=0$
3. $a^{2}=|a|^{2}$
4. $|a b|=|a| .|b|$
5. $\left|\frac{a}{b}\right|=\frac{|a|}{|b|}$
$6 .|k a|=|k| .|a|$
Example: $\forall a \in R, \sqrt{a^{2}}=|a|$
Proof:
If $a>0$ then $\sqrt{a^{2}}=a$
If $a<0$ then $\sqrt{a^{2}}=-a$
by def absolute value to a we have

$$
\begin{aligned}
& |a|=\left\{\begin{array}{l}
a=\sqrt{a^{2}} \text { if } a \geq 0 \\
-a=\sqrt{a^{2}} \text { if } a<0
\end{array}\right. \\
& |a|=\sqrt{a^{2}} \text { وفي كلتا الحالتين يكون لدينا }
\end{aligned}
$$

The triangle inequality
Theorem: if $a, b \in R$, then $|a+b| \leq|a|+\mid b$
Proof:

$$
\begin{aligned}
& |a+b|^{2}=(a+b)^{2} \leq a^{2}+2 a b+b^{2} \\
& \\
& \leq|a|^{2}+2|a b|+|b|^{2} \\
& \\
& \leq(|a|+|b|)^{2} \\
& \therefore|a+b| \leq|a|+|b|
\end{aligned}
$$

Corollary: if $a, b \in R$, then $|a-b| \geq|a|-|b|$

LCH (2)

Def: let $S \subset R \mathrm{~S}$ is said to be bounded above if there is some real numbers m s.t $x \leq m \forall x \in S$, m is called upper bounded of S

LCH (3)

Proposition:
If $\emptyset \neq S \subset R$ and $\sup (S)=M$, then $\forall p<M \exists x \in S$ s.t
$p<x \leq M$
i.e.: if $\sup (S)=M$ then $\forall \epsilon>0, \exists x \in S$ s.t $M-\epsilon<x \leq$

M
proof:
let $\sup (S)=M$ then $\forall x \in S, x \leq M$
T.P $\forall x \in S, p<x$?

Suppose that $x \leq p, \forall x \in S$
$\rightarrow \mathrm{p}$ is upper bounded for S , but by hypothesis
$p<M=\sup (S) \ldots \ldots . . . \mathrm{C}$!
$\therefore \exists x \in S \ni p<x \leq M$.

Theorem: The set N of natural numbers is unbounded above in R
Proof:
Suppose N is bounded above.
By completeness axiom
N has a supreme M
Let $\sup (N)=M$
From proposition above $\exists n \in N$ s.t $M-1<n<M$.

Then $M-1<n \rightarrow M<n+1$,
But $n+1 \in N$
And $n+1>M=\sup (N) \rightarrow C!$
Therefore, N is unbounded above

Theorem: Archimedan property
If $x \in R^{++}$then for any $y \in R$, there exists $n \in N$ s.t
$n>y$

Def: let F a field, F is called Archimedean filed, if for any $x \in F, \exists n \in N$ s.t $n>x$ i.e.: N is abounded above in F

Ex:
1.R is Archimedean field
2. Q is Archimedean field
$3 . s=\{a+b \sqrt{2}: a, b \in Q\}$ is Archimedean field
Theorem: Denseness property
Between any two distinct reals, there exists infinitely many rationales and irrationals

LCH (4)
Def: (irrational numbers Q')
Let Q^{\prime} be a complement of Q in the real number R.
i.e.: $Q^{\prime}=R-Q$, we called is set of irrational numbers remark: $R=Q \cup Q^{\prime}$
Theorem: prove that $\sqrt{2}$ is irrational number
i.e.: There are no rational numbers whose square is 2

$$
\text { i.e.: } \nexists x \in Q \ni x^{2}=2
$$

proof:
suppose $\sqrt{2}$ is rational number i.e. $\sqrt{2}=\frac{m}{n}$
So $2=\frac{m^{2}}{n^{2}}$, then $m^{2}=2 n^{2}$
Case 1:
m and n are odd.
Since m is odd $\rightarrow m^{2}$ is odd
Since n is odd $\rightarrow n^{2}$ is odd
But $2 n^{2}$ is even $\rightarrow m^{2}=2 n^{2} \rightarrow C$!
Case 2:
m is even and n is odd, then $m=2 p$
and $m^{2}=4 p^{2}, \rightarrow 4 p^{2}=2 n^{2} \rightarrow 2 p^{2}=n^{2} \rightarrow$
C!
Case 3:
m is odd and n is even, then, since m is odd
$\rightarrow m^{2}$ is odd, and $2 n^{2}$ is even $\rightarrow m^{2}=2 n^{2} \rightarrow$
C !
$\therefore \sqrt{2}$ is irrational number

Theorem: Q is not Complete field

Theorem: for every real $x>0$ and every integer $n>0$ there is one and only one positive real y such that $y^{n}=x$

$$
\text { i.e.: } \forall x>0, \forall n \in N, \exists!, y \in R^{+} \text {s.t } y=\sqrt[n]{x}
$$

Theorem: if $\frac{m}{n}$ and $\frac{p}{q}$ are rationales and $q \neq 0$ then $\frac{m}{n}+\sqrt{2} \frac{p}{q}$ is irrational number
Proof:
Suppose $\frac{m}{n}+\sqrt{2} \frac{p}{q}$ is rational
Then there is $r, s \in Z, s \neq 0$ s.t $\frac{m}{n}+\sqrt{2} \frac{p}{q}=\frac{r}{s}$
So $\sqrt{2} \frac{p}{q}=\frac{r}{s}-\frac{m}{n} \rightarrow \sqrt{2}=\frac{p}{q}\left(\frac{r n-s m}{s n}\right) \in Q$
So $2=\left(\frac{q(n r-s m)}{p s n}\right)^{2} \rightarrow!$ with theorem: $\nexists x \in Q \ni$
$x^{2}=2$
Theorem: Between any two distinct rationales there is an irrational number.

LCH (5)

Ex:
1.Prove $x^{2} \geq 0, \forall x \in R$
2.Let a, b be tow real s.t $a \leq b+\epsilon \forall \epsilon>0$ then $a \leq b$ Proof (2):
Suppose $a>b$
Then $a+a>b+a$
$\frac{2 a}{2}>\frac{b+a}{2}$
$a>\frac{b+a}{2}$
Take $\epsilon=\frac{a-b}{2}>0 \quad$ (Since $a>b$, then $a-b>0 \rightarrow$

$$
\left.\frac{a-b}{2}>0\right)
$$

$a \leq b+\epsilon \rightarrow a \leq b+\frac{a-b}{2}=\frac{2 b+a-b}{2}=\frac{a+b}{2}<a$
From (1) C!
$a \leq b$

Ex:
$1 . Q$ is order field $\left(A_{1} \rightarrow A_{14}\right)$
2.C is field but not order
since: if $x=1 \rightarrow x=\sqrt{1} \rightarrow x^{2}=-1<0 \rightarrow C$!
since: $\left(x^{2} \geq 0, \forall x \in R\right)$
Metric space

Def: let X be anon-empty set and $d: X \times X \rightarrow R^{+}$be a mapping. We say that order (X, d) is metric space if it is satisfying the following:

```
\(1 . d(x, d) \geq 0, \forall x, y \in X\)
2. \(d(x, y)=d(y, x)\)
3. \(d(x, z) \leq d(x, y)+d(y, z)\)
4.d \((x, y)=0 \leftrightarrow x=y\)
```

Not: d is called metric mapping $d(x, y)$ is a distance between x and y

Remark: A mapping $d: X \times X \rightarrow R^{+}$is called a pseudo metric for X iff d satisfies $(1,2,3)$ in the above definition and $d(x, x)=0, \forall x \in X$

Cauchy - Shwarz inequality
Let $a=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $b=\left(b_{1}, b_{2}, \ldots b_{n}\right)$ be two tripe of complex number, then:

$$
\sum_{i=1}^{n}\left|a_{i}+b_{i}\right| \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{2}\right)^{\frac{1}{2}} \cdot\left(\sum_{i=1}^{n}\left|b_{i}\right|^{2}\right)^{\frac{1}{2}}
$$

Minkowskis inequality

$$
\begin{aligned}
& \left(\sum_{i=1}^{n}\left|a_{i}+b_{i}\right|^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{i=1}^{n}\left|a_{i}\right|^{p}\right)^{\frac{1}{p}}+\left(\sum_{i=1}^{n}\left|b_{i}\right|^{p}\right)^{\frac{1}{p}} \\
& \geq 1
\end{aligned}
$$

Ex: if $X=R$ and $d(x, y)=|x-y|$, show that (X, d) is a metric space.
Solution:

$$
\begin{aligned}
& \text { 1.d }(x, y)=|x-y| \geq 0 \quad \text { by def. of Absolute value } \\
& 2 . d(x, y)=|x-y|=|-(y-x)|=|y-x|= \\
& d(y, x) \\
& \text { 3.d }(x, z)=|x-z|=|x-y+y-z| \\
& \leq|x-y|+|y-z| \\
& =d(x, y)+d(y, z) \\
& \text { 4.d }(x, y)=0 \text { inf } x=y \\
& d(x, y)=0 \text { eff }|x-y|=0 \\
& \text { ifs } x-y=0 \\
& \text { inf } x=y
\end{aligned}
$$

$\therefore(X, d)$ is a metric space
Discrete metric space
Let $X \neq \emptyset$ and $d: X \times X \rightarrow R$ s.t

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 1 & \text { if } x \neq y\end{cases}
$$

$\forall x, y$, show that (X, d) is metric space

Solution:

$$
\begin{aligned}
& \text { 1.d }(x, y) \geq 0, \forall x, y \in X \quad \text { (by def. d) } \\
& \text { 2. } d(x, y)=d(y, x) \text { ? } \\
& \text { if } x=y \rightarrow d(x, y)=0=d(x, y) \\
& \text { if } x \neq y \rightarrow d(x, y)=1=d(y, x) \\
& \text { 3.Let } x, y, z \in X \text { T.P } d(x, y) \leq d(x, y)+ \\
& d(y, z) \text { ? } \\
& \text { if } x=z \text { then } d(x, z)=0 \\
& \text { since } d(x, y) \geq 0 \text { and } d(y, z) \geq 0 \text { then } \\
& d(x, z) \leq d(x, y)+d(y, z) \\
& \text { if } x \neq z \text { then } d(x, z)=0 \\
& \text { since } d(x, z)=1 \text { and either } x \neq y \text { or } x \neq \\
& z, y=z \\
& \text { either: } d(x, z)=d(x, y)=d(y, z)=1 \\
& \text { or: } d(x, z)=d(x, y)=1 \text { and } d(y, z)=0 \\
& \text { then: } d(x, z) \leq d(x, y)+d(y, z) \\
& 1 \leq 1 \quad+1 \\
& 1 \leq 1 \quad+0
\end{aligned}
$$

LCH (6)

Ex: show that (X, d) is pseudo metric space but not metric where

$$
d: X \times X \rightarrow R, d(x, y)=\left|x^{2}-y^{2}\right|, \text { forall } x, y \in
$$

R.

Solution:

Let $x, y, z, \in R$
1- $d(x, y)=\left|x^{2}-y^{2}\right| \geq 0$, by def Abs. Value
2- $d(x, y)=\left|x^{2}-y^{2}\right|=\left|-\left(y^{2}-x^{2}\right)\right|=$
$\left|y^{2}-x^{2}\right|=d(y, x)$
3- $d(x, y)=\left|x^{2}-y^{2}\right|=\left|x^{2}-z^{2}+z^{2}-y^{2}\right| \leq$
$\left|x^{2}-z^{2}\right|+\left|z^{2}-y^{2}\right|$
$d(x, z)+d(z, y)$
$4-d(x, x)=\left|x^{2}-x^{2}\right|=0, \forall x \in R$
$\therefore(X, d)$ pseudo metric space but not metric
space,
since, if $d(x, y)=0 \rightarrow\left|x^{2}-y^{2}\right|=0 \rightarrow x^{2}-$
$y^{2}=0 \rightarrow x^{2}=y^{2}$

$$
\rightarrow x=y
$$

ex: let $x=1, y=-1$
then $d(x, y)=d(1,-1)=\left|1^{2}-(-1)^{2}\right|=$
0 , but $1 \neq-1$

Def: let (X, d) be a metric space $S, T \subseteq X, p \in S$ then

1-The distance between p and S is

$$
d(p, S)=\inf \{d(p, x): x \in S\}
$$

2-The distance between S and T is $d(S, T)=\inf \{d(x, y): x \in S, y \in T\}$
3-Diameter of S is $d(S)=\sup \{d(x, y): x, y \in S\}$
4 - S is called bounded, if $\exists M \in R^{++}$, s.t $d(x, y) \leq$ $M, \forall x, y \in S$.

Def: let (X, d) be a metric space and $S \subseteq X, \mathrm{~S}$ is called open set, if $\forall x \in S, \exists r>0$ s.t $B(x, r) \subset S$

Ex: if $S=\emptyset$, then S is open set

$$
\begin{gathered}
\text { If } x \in S \rightarrow \exists r>0 \text { s.t } B(x, r) \subset S \\
F \rightarrow F \text { or } T: T
\end{gathered}
$$

LCH (7)

If $S=X$, then S is open set
Solution:
Since all balls is contains in X

Any open interval is open set. But the convers is not true

Solution:

Let $x \in s \rightarrow x \in(a, b) \subseteq(a, b)=S$.
So. S is open set

Ex: Let $S=(-1,1) \cup(2,3)$
Let $x \in s$, then $x \in(-1,1)$ or $x \in(2,3)$
Then $x \in(-1,1) \subset S$ or $x \in(2,3) \subset S$
$\therefore \mathrm{S}$ is open set. But is not open interval

Any ball is open set.

Proof:
$\forall y \in B(x, r), \exists w>0$, s.t $B(y, w) \subset B(x, r)$?
Let $w=r-d(x, y)>0$
Let $Z \in B(y, w) \rightarrow d(z, y)<w$
$d(Z, y) \leq d(x, y)+d(y, z)$
$\leq d(x, y+w$
$=d(x, y)+r-d(x, y)$
$=r$
Then $Z \in B(x, r) \rightarrow B(y, w) \subset B(x, r)$
This is true for all y in $\mathrm{B}(\mathrm{x}, \mathrm{r})$
So $\mathrm{B}(\mathrm{x}, \mathrm{r})$ is open set
$S=\{x\}, x \in R$ is not open set
Since there is not open interval in S Containing x and Contained in S
i.e $((\forall r>0, \exists B(x, r)=(x-r, x+r) \subset S))$
$[a, b],[a, b),[a, \infty)$ and $(-\infty, b]$ are not open set Proof:
If $\mathrm{S}=[\mathrm{a}, \mathrm{b}]$,then S is not open set?
Since, if $x=a \rightarrow \forall r>0, B(a, r)=(a-r, a+$
r) $\not \subset[a, b]$

The intersection of any tow open set is open set i.e ((the intersection of any finite family of open set is open))

Proof:
Let $A=\left\{S_{k}: S_{k}\right.$ is open set $\left.k=1,2, \ldots, n\right\}$ T.p $\bigcap_{k=1}^{n} S_{k}$ is open set

Let $x \in \bigcap_{k=1}^{n} S_{k} \rightarrow x \in S_{k}, \forall k$, but S_{k} is open set $\forall k$, then $\exists r_{k}>0$ s.t $B\left(x, r_{k}\right) \subset S_{k}$
Let $r=\min \left\{r_{1}, r_{2}, \ldots, r_{n}\right\}$
Then $B(x, r) \subset S_{k}, \forall k$.
$\therefore B(x, r) \subset \bigcap_{k=1}^{n} S_{k}$, therefore $\bigcap_{k=1}^{\infty} S_{k}$ is open set.
Theorem: the infinite intersection of open sets is not necessary open set.

Ex: let $S_{n}=\left(x-\frac{1}{n}, x+\frac{1}{n}\right) \forall x \in R$, open interval.

$$
\begin{aligned}
& n=1 \rightarrow s_{1}=(x-1, x+1) \\
& n=2 \rightarrow S_{2}=\left(x-\frac{1}{2}, x+\frac{1}{2}\right) \\
& n=3 \rightarrow S_{3}=\left(x-\frac{1}{3}, x+\frac{1}{3}\right)
\end{aligned}
$$

When $n \rightarrow \infty \bigcap_{k=1}^{\infty} S_{k}=\{x\}$ is not open
Theorem: the union of any family (finite or infinite) (countable or uncountable) of open set is open Proof:

Let $A=\left\{S_{\alpha}, S_{\alpha}\right.$ is open set $\left.\alpha \in \wedge\right\}$
T.P: $\cup_{\alpha \in \wedge} S_{\alpha}$ is open set

Let $x \in \mathrm{U}_{\alpha \in \wedge} S_{\alpha} \rightarrow \exists \alpha \in \wedge$ s.t $x \in S_{\alpha}$
Since S_{α} is open set $\rightarrow \exists \alpha>0$ s.t
$B\left(x, r_{\alpha}\right) \subset S_{\alpha}$, then $x \in B\left(x, r_{\alpha}\right) \subset S_{\alpha} \subset \mathrm{U}_{\alpha \in \wedge} S_{\alpha}$
This is true $\forall x \in \cup_{\alpha \in \Lambda} S_{\alpha}$, therefore $\mathrm{U}_{\alpha \in \Lambda} S_{\alpha}$ is open
set

Theorem: S is open iff S is the Union of balls

LCH (8)

Def: let X be anon-empty set and τ is a family of subsets of X , if τ satisfy the following

$$
\begin{array}{ll}
\text { 1- } & \phi, X \in \tau \\
\text { 2- } & \text { If } G, H \in \tau \rightarrow G \cap H \in \tau \\
\text { 3- } & \text { If }\left\{G_{\lambda}\right\} \in \tau \rightarrow \cup_{\lambda \in \Lambda} G_{\lambda} \in \tau
\end{array}
$$

Then, the order pair (X, τ) is called topological Space.

Theorem: every metric space is topological space.

Proof:

Let (X, d) be a metric space and $\tau=$ the family of all open subsets of X, then

$$
\begin{aligned}
& \text { 1- } \phi, X \text { open sets } \rightarrow \phi, X \in \tau \\
& \text { 2- } G_{1}, G_{2} \in \tau \rightarrow G_{1}, G_{2} \text { are open sets } \\
& \rightarrow G_{1} \cap G_{2} \in \tau \\
& \text { 3-If } G_{\lambda} \in \tau, \lambda
\end{aligned} \quad \in \wedge \rightarrow \forall \lambda, G_{\lambda} \text { open subset of X } \quad \begin{aligned}
& \rightarrow \cup_{\lambda \in \Lambda} G_{\lambda} \text { open set of } \\
& \rightarrow \cup_{\lambda \in \Lambda} G_{\lambda} \in \tau \\
\therefore & (X, \tau) \text { is a topological space }
\end{aligned}
$$

Def: let d_{1} and d_{2} be two metric mapping in the set X , then d_{1}, d_{2} are called Equivalent if every open set in $\left(X, d_{1}\right)$ is open in $\left(X, d_{2}\right)$ and Vice Versa

Def: let (X, d) be a metric space and $S \subseteq X, \mathrm{~S}$ is called closed set if S^{c} is open Set where $S^{c}=X-s$
(Complement of S)

Ex:
$1-S=X$ is closed set.
Solution:
Since $S^{c}=X^{c}=\phi$ open set
$2-S=\phi$ is closed set
Solution:
since $S^{c}=\phi^{c}=X$ is open set
$3-S=[a, b],[a, b), S=(-\infty, b]$ are closed set in R
Solution:
if $S=[a, b] \rightarrow S^{c}=(-\infty, a) \cup(b, \infty)$ open set $\rightarrow S$ is
closed set
4-In R, $S=\{x\}$ is closed set
Since:
$S^{c}=(-\infty, x) \cup(x, \infty) \rightarrow S^{c}$ is open, So S is closed
set.
5-Any finite set in R is closed set
Solution:
let $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq R$.
$S^{c}=\left(-\infty, x_{1}\right) \cup\left(x_{1}, x_{2}\right) \cup \ldots \cup\left(x_{n-1}, x_{n}\right) \cup$
$\left(x_{n}, \infty\right)$
So, S^{c} is open, then S is closed set
6 -If $S=N, S=Z$, then S is Closed set
Solution:
let $S=N$
then $S^{c}=(-\infty, 1) \cup(1,2) \cup(2,3) \ldots\left(\cup_{n=4}^{\infty}(n, n+\right.$
1))
$\rightarrow S^{c}$ is open $\rightarrow S$ is closed
if $S=Z \rightarrow S^{c}=\left(\cup_{n=1}^{\infty}(-(n+1),-n)\right) \cup(-1,0) \cup$
$(0,1) \cup\left(\cup_{n=1}^{\infty}(n, n+1)\right)$
S^{c} is open, then S is closed

LCH (9)

7-The Union of finite number of closed sets is closed. Solution:
let $A=\left\{S_{i} ; S_{i}\right.$ closed set in $\left.X, i=1,2, \ldots, n\right\}$
T.P: $\bigcup_{i=1}^{n} S_{i}$ is closed set
i.e. T.P $\left(\bigcup_{i=1}^{n} S_{i}\right)^{c}$ is open set

Since S_{i} is closed, $\forall i$ then S_{i}^{c} is open $\forall i$ and $\bigcap_{i=1}^{n} S_{i}^{c}$ is open
So, $\left(\cup_{i=1}^{n} S_{i}\right)^{c}$ is open
$\left(\left(\cup_{i=1}^{n} S_{i}\right)^{c}=\right.$
$\left.\bigcap_{i=1}^{n} S_{i}^{c}\right)$
therefore $\bigcup_{i=1}^{n} S_{i}$ is closed.

Remark: the infinite union of closed sets is not necessary closed set

Ex: let $S_{n}=\left\{\left[\frac{-n}{n+1}, \frac{n}{n+1}\right]: n \in N\right\}, S_{n}$ is closed interval, Is $\cup_{n=1}^{\infty} S_{n}$ is closed?

Solution:

$$
\text { If } n=1 \rightarrow S_{1}=\left[\frac{-1}{2},, \frac{1}{2}\right]
$$

If $n=2 \rightarrow S_{2}=\left[\frac{-2}{3}, \frac{2}{3}\right]$

When $n \rightarrow \infty \Longrightarrow \lim _{n \rightarrow \infty} \frac{ \pm n}{n+1}=\lim _{n \rightarrow \infty} \frac{ \pm \frac{n}{n}}{\frac{n}{n}+\frac{1}{n}}= \pm 1$
$\therefore \bigcup_{n=1}^{\infty} s_{n}=(-1,1)$ open set

Theorem: The infinite intersection of closed set S is closed?

Def: let X be a metric space and $S \subseteq X, p \in X, \mathrm{p}$ is called an accumulation point of S if every open set contain p, contains another point q s.t $p \neq q, q \in S$.
i.e.: p is a cc. point of S if $\forall U, \mathrm{U}$ is open set $p \in U$, then $U-P \cap S \neq \phi$

Remark: Since every open set is Union balls. So, we can define acc. Point as following:
P is acc. Point of S , if $\forall r>0 B(p, r)-\{p\} \cap S \neq \phi$ $* S^{\prime}$ is the closure of all acc. Point of S (Derived set) * \bar{S} is the closure of S and $\bar{S}=S \cup S^{\prime}$

* P is not acc. Point, if $\exists U, U$ is open and $p \in U$

$$
\text { S.t } U-\{p\} \cap S=\phi .(\text { i.e. } \exists r>0, B(r, p)-\{p\} \cap
$$

$$
S=\phi
$$

Ex: let $s=\{1,5\}$, find S^{\prime} and \bar{S}
Solution: TO find S^{\prime} there are some cases

LCH (10)

$x=1, x=5, x<1, x>5,1<x<5$
If $x=1 \rightarrow \mathrm{x}$ is not acc. Point since, $\exists r>0$
$B(x, r)-\{x\} \cap S=\emptyset$, when $r=1$
$B(1,1)-\{1\} \cap\{1,5\}=(0,2)-\{1\} \cap[1,5\}=\emptyset$
If $x=5 \rightarrow \mathrm{x}$ is not acc. Point, since $\exists r>0, B(x, r)-$
$\{x\} \cap S=\emptyset$, when $r=1$
$\rightarrow B(5,1)-\{5\} \cap\{1,5\}=(4,6)-\{5\} \cap\{1,5\}=\varnothing$
If $x<1 \rightarrow \mathrm{x}$ are not acc. Point since $x \in(x-1,1)$ and $(x-1,1) \cap S=\varnothing$
If $x>5 \rightarrow x$ are not acc. Point, since $x \in(5, x+$

1) and $(5, x+1) \cap S=\emptyset$

If $1<x<5$ are not acc. Point since,
$x \in(1,5)$ and $(1,5) \cap S=\emptyset$
So, S has no a acc. Point then $S^{\prime}=\emptyset$ and $\bar{S}=S \cup S^{\prime}=$ $S \cup \emptyset=S$.

Let $s=\left\{1, \frac{1}{2}, \frac{1}{3}, \ldots\right\}=\left\{\frac{1}{n}, n=1,2,3, \ldots.\right\}$ show that $S^{\prime}=\{0\}$

If $S=(a, b)$, find S^{\prime}

Solution:

If $x=a \rightarrow x$ is acc. Point since $\forall r>0$,
$a \in B(0, r)=(a-r, a+r)$ and $B(a, r)-\{a\} \cap S \neq$ \emptyset
If $x=b \rightarrow x$ is acc. Point, since $\forall r>0, b \in B(b, r)$
$B(b, r)=(b-r, b+r)$ and $B(b, r)-\{b\} \cap$ $(a, b) \neq \varnothing$
If $a<x<b \rightarrow x$ are acc. Point since $\forall r>0$,
$x \in B(x, r)=(x-r, x+r)$ and $B(x, r)-\{x\} \cap$
$S \neq \emptyset$
That is $(x-r, x+r)-\{x\} \cap(a, b) \neq \emptyset$
If $x<a \rightarrow x$ are not acc. Point since $x \in$
$(x-1, a)$ and $(x-1, a) \cap S=\varnothing$
If $x>b \rightarrow x$ are not acc. Point, since $x \in$
$(b, x+1)$ and $(b, x+1) \cap(a, b)=\emptyset$
$\therefore S^{\prime}=[a, b] \rightarrow \bar{S}=S \cup S^{\prime}=[a, b]$

LCH (11)

Def: A sub set A of a metric space X is said to be dense if $\bar{A}=X$
Ex: prove that $\bar{Q}=R$ (i.e., Q dense set in R) Solution:

If $x \in R$, then x is acc. Point in Q .
Since any open interval Contain x Contains infinitely rational and irrationals
Then $Q^{\prime}=R$

$$
\text { So } \bar{Q}=Q \cup Q^{\prime}=Q \cup R=R
$$

Def: a metric space is called separable if it has a countable dense subset.

Ex: R separable since Q countable and $Q \subseteq R$, with Q dense in R
Theorem: let X be a metric space, $S \subseteq X$ then
1- $\quad S$ is closed iff $S^{\prime} \subset X$
2- \bar{S} is closed set
3- $\quad \bar{S}=S$ iff S closed set
4- $\quad \bar{S}$ is smallest closed set contains S .

Compact Space

Def: let (X, d) be a metric space, $\varnothing \neq S \subseteq X$, if the set $\left\{U_{\lambda}: U_{\lambda}\right.$ open set, $\left.\lambda \in \Lambda\right\}$ is a family of open subsets of X such that $S \subseteq U_{\lambda \in \Lambda} U_{\lambda}$, then the family $\left\{U_{\lambda}\right\}$ is called open cover for S in X.

- If the family $\left\{U_{\lambda}\right\}$ is finite and $S \subseteq U_{\lambda \in \Lambda} U_{\lambda}$ then $\left\{U_{\lambda}\right\}$ is called finite cover.
- Let $\left\{U_{\lambda}\right\}$ and $\left\{U_{\alpha}\right\}$ be to open cover for S and $U_{\lambda} \in\left\{U_{\alpha}\right\} \forall \lambda$, then $\left\{U_{\lambda}\right\}$ is called subcover for $\left\{U_{\alpha}\right\}$ Def: let A be a subset of a metric space $(X, d), \mathrm{A}$ is called compact set if every open cover for A in X has a finite subcover.

Exp: Any finite subset B of matric space (X, d) is compact set
$\mathrm{Ex}: \mathrm{R}$ is not compact

Ex : Any open interval $\mathrm{A}=(\mathrm{a}, \mathrm{b})$ is not compact

Ex : Any closed interval $\mathrm{A}=[\mathrm{a}, \mathrm{b}]$ is Compact.
Proof :
Since we can restrict any open cover for A to finite subcover such as :

$$
\text { Let } \epsilon>0, B=\{(a-\epsilon, a+\epsilon,(a, b),(b-\epsilon, b+\epsilon)\}
$$

$\xrightarrow[(a) \quad(b)]{ }$

Theorem: ((Bolzano weir strass theorem))
In compact space X, every infinite subset S of X has at least one accumulation point.

Theorem : In compact metric space, every closed subset is compact.

Proof : X be a compact metric space, and A be a closed subset of X, then
A^{c} is open. T.P A is compact.
Let $B=\left\{U_{\lambda}: U_{\lambda}\right.$ is open set in $\left.X, \forall \lambda \in{ }^{\wedge}\right\}$ be open cover for A .
Then $A \subseteq \mathrm{U}_{\lambda \epsilon^{\wedge}} U_{\lambda}$
Sine $X=A \cup A^{c} \subseteq\left(\cup_{\lambda \in^{\wedge}} U_{\lambda}\right) \cup A^{c}$,
But A^{c} is open set then $U_{\lambda \epsilon^{\wedge}} U_{\lambda} \cup A^{c}$ is open cover for X , since X is compact set, then there exists a finite member $\lambda_{1}, \lambda_{2}, \ldots \ldots, \lambda_{n}$ such that

$$
X=A^{c} \cup\left(\bigcup_{i=1}^{n} U_{\lambda i}\right)
$$

Since that $X=A^{c} \cup\left(\cup_{i=1}^{n} U_{\lambda i}\right)$. Since $A \cap A^{c}=\emptyset$, then $A \subseteq \cup_{i=1}^{n} U_{\lambda i}$
$\Rightarrow \mathrm{B}$ has a finite subcover $\left\{U_{\lambda 1}, U_{\lambda 2}, \ldots \ldots, U_{\lambda n}\right\}$. For $\mathrm{A}, \Rightarrow \mathrm{A}$ is compact.

LCH (13)

Theorem: Let (X, d) be a metric space, $A \subseteq X$, If A is compact, Then A is closed

Theorem: Let (X, d) be a metric space, $A \subseteq X$, If A is compact, Then A is bounded

Remark: In metric space

Compact \rightarrow Closed + bounded

Theorem: Let $\left\{I_{n}: n=1,2,3, \ldots\right\}$ be a family of closed interval
if $I_{n+1} \subset I_{n}, \forall n$, then $\bigcap_{n=1}^{\infty} I_{n}=\varnothing$
Theorem: (Hien-Bord Theorem)
Every closed and bounded subset of $R^{n}, n \geq 1$, is compact.

Chapter Three

Sequences in Metric Space

Definition: Let S be any set a function f whose domain is the set N and the range is S is

Called a sequence in S.
i.e. $f: N \rightarrow S$, where $\forall n \in N, \exists x_{n} \in S$ s.t $f(n)=x_{n}$

$$
\text { 1. }<\frac{1}{5 n}>=\frac{1}{5}, \frac{1}{10}, \frac{1}{15}, \ldots
$$

$$
\begin{aligned}
& 2 .<\frac{1}{n+1}>=\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots \\
& 3 .<4>=4,4,4, \ldots \\
& 4 .<n-3>=-2,-1,0,1, \ldots
\end{aligned}
$$

Def: Let (X, d) be a metric space and $\left.<X_{n}\right\rangle$ be seq. in X , then $<X_{n}>$ is said to be converges to appoint in X , if $\forall \epsilon>0, \exists k \in N$ s.td? $\left(X_{n}, x\right)<\epsilon, \forall n>k$. We write $X_{n} \rightarrow x$ or $\lim _{n \rightarrow \infty} X_{n}=x, x$ is called

LCH (14)

A Limit point of $\left\langle X_{n}>\right.$.
If $\forall n>K$, does not Converge, them $<X_{n}>$ is called divergent Sequence.
Not that: K depend on ϵ only.
التغير الهنسي للتعريف التقارب

$$
\left(X_{n} \rightarrow x\right)
$$

يعني الكرة التي مركز ها x ونصف قطر ها X ونا تمتالك عدد غير منتهي من حدود او نقاط المتتابعة X_{n} لانه $\forall \epsilon>0, \exists k \in N$ std $\left(X_{n}, x\right)<\epsilon, \forall n>k \Longrightarrow X_{n} \in$ $B(x, \epsilon)$.
Ex: Let $<X_{n}>=<1>$ constant seq. show that $\lim _{n \rightarrow \infty} X_{n}=1$
$<1>$ converge to 1 since $\forall \epsilon>0, \exists k \in N$
st $d\left(X_{n}, x\right)=|1-1|=0<\epsilon, \forall n>k$

Ex: Let $<X_{n}>$ be a seq. defined by $X_{n}=\left\{\begin{array}{l}n \text { if } n \leq 50 \\ 3 \text { if } n \geq 50\end{array}\right.$.show that $\lim _{n \rightarrow \infty} X_{n}=3$

Solution:

$$
\begin{aligned}
& <X_{n} \geq 1,2,3, \ldots, 50,3,3,3, \ldots \\
& \forall \epsilon>0, \exists k=50 \text { s.t } d(X, x)=|3-3|=0<\epsilon
\end{aligned}
$$

Ex: Show that $\lim _{n \rightarrow} X_{n}=2$, where $\left\langle X_{n}\right\rangle=\left\langle\frac{2 n-3}{n+1}\right\rangle$
Solution:
$\forall \epsilon>0$, to find $K \in N$ s.t $d\left(X_{n}, x\right)<\epsilon, \forall n>k$?

$$
\begin{array}{r}
d\left(X_{n}, x\right)=\left|\frac{2 n-3}{n+1}-2\right|=\left|\frac{2 n-3-2(n+1)}{n+1}\right| \\
=\left|\frac{2 n-3-2 n-2}{n+1}\right|=\left|\frac{-5}{n+1}\right|=\frac{5}{n+1}
\end{array}
$$

$\forall \epsilon>0$, by Arch. Property $\rightarrow \exists K \in N \ni$
$\forall k>5 \rightarrow \frac{5}{\epsilon}<k$.
$\forall n>K \rightarrow n+1>k+1$ and $k+1>k, k>\frac{5}{\epsilon}$
$\Rightarrow n+1>k+1>k>\frac{5}{\epsilon}$
$\frac{1}{n+1}<\frac{\epsilon}{5}, \forall n>k$

Exc:
1.Let $<X_{n}>=<\frac{2}{\sqrt{n}}>$, show that $\lim _{n \rightarrow \infty} X_{n}=0$
2.Let $\left\langle X_{n}\right\rangle=\left\langle\frac{5 n-4}{2-3 n}\right\rangle$, show that $\lim _{n \rightarrow \infty} X_{n}=-\frac{5}{3}$
3.Let $\left\langle X_{n}\right\rangle=\left\langle\frac{2-7 n}{1-5 n}\right\rangle$, show that $\lim _{n \rightarrow \infty} X_{n}=\frac{7}{5}$

Show that the following sequence are divergent

$$
\begin{aligned}
& 1 .<X_{n}>=<\sqrt{n}> \\
& 2 .<X_{n}>=<(-1)^{n}> \\
& 3 .<X_{n}>3^{n}> \\
& 4 .<X_{n}>=<\frac{n^{2}}{2 n-1}>
\end{aligned}
$$

Theorem: If $<X_{n}>$ is convergent sequence in (X, d), then $\left\langle X_{n}\right\rangle$ has a unique limit point.

Proof:

Suppose $<X_{n}>$ has two limit points x and y with $x \neq y$ and $d(x, y)=\epsilon$
Since $X_{n} \rightarrow y \Rightarrow \forall \epsilon>0, \exists k_{2} \in N s, t d(x, y)<\frac{\epsilon}{2}$
Let $k=\max \left\{k_{1}, k_{2}\right\}$
Since $d(x, y) \leq d\left(x, x_{n}\right)+d\left(x_{n}, y\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$
$\Rightarrow d(x, y)<\epsilon, \forall \epsilon>0$
This true only when $d(x, y)=0 \Rightarrow x=y \rightarrow C!$
$\left.\therefore<X_{n}\right\rangle$ has a unique limit point.

LCH (15)

Definition: A seq. $<X_{n}>$ is called bounded the set $\left\{X_{n}: n \in N\right\}$ is bounded

$$
\begin{aligned}
& \text { i.e. }\left\langle x_{n}>\right.\text { is bounded if } \\
& \exists m>0 \text { s.t } d\left(x_{n}, x_{m}\right) \leq M, \forall n, \forall m \text {. }
\end{aligned}
$$

Ex:

$$
\begin{aligned}
& 1 .<\frac{(-1)^{n+1}}{n}>=1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \ldots \\
& \quad\left|x_{n}\right|=\left|\frac{(-1)^{n+1}}{n}\right|=\frac{1}{n} \leq 1 \Rightarrow<x_{n}>\text { is bounded } \\
& \text { and } M=1
\end{aligned}
$$

$$
2 .<5+\frac{(-1)^{n+1}}{n}>=6, \frac{9}{2}, \frac{16}{3}, \ldots
$$

$$
<x_{n} \geq 5+\frac{1}{n} \leq 5+1=6 \Rightarrow<x_{n}>\text { is bounded }
$$

$$
\text { and } M=6
$$

$$
3 .<n+(-1)^{n}>=\left\{\begin{array}{l}
<n-1>, \text { if } n \text { is odd } \\
<n+1>, \text { if } n \text { is even }
\end{array}\right.
$$

$$
\text { 4. }\left|x_{n}\right|=\left\{\begin{array}{l}
|n-1| \geq 0 \\
|n+1| \geq 2
\end{array}\right.
$$

Theorem: In metric space. Every convergent sequence is bounded.

Proof:

Let $\left\langle x_{n}\right\rangle$ be a convergent sequence in (X, d) and $x_{n} \rightarrow x$, to prove $<x_{n}>$ is bounded
Since $x_{n} \rightarrow x \Rightarrow \forall \epsilon>0, \exists k \in N$ s.t $d\left(x_{n}, x\right)<$ $\epsilon, \forall n>k$
That $\epsilon=1 \Rightarrow d\left(x_{n}, x\right)<1, \forall n \in k$.
Let $r=\max \left\{1, d\left(x_{1}, x\right), d\left(x_{2}, x\right), \ldots, d\left(x_{n}, x\right)\right\}$
$\Rightarrow d\left(x_{n}, x\right)<r$
$\left.\therefore<x_{n}\right\rangle$ is bounded and $M=2 r$

Remark: The convers of above theorem is not true.

Ex: $\left\langle(-1)^{n}\right\rangle=-1,1,-1,1, \ldots$

$$
\begin{aligned}
& \left|x_{n}\right|=\left|(-1)^{n}\right|=1 \Rightarrow<x_{n}>\text { is bounded and } \\
& M=1 \\
& <(-1)^{n}>\text { is divergent? }
\end{aligned}
$$

Remake: If $<x_{n}>$ unbounded, then $\left\langle x_{n}>\right.$ is divergent.

Proof:

Suppose that $<x_{n}>$ converged and unbounded sequence.
Since $<x_{n}>$ Convergent $\rightarrow<x_{n}>$ bounded by theorem (In metric space, every conv. Seq. is bounded) $\rightarrow \mathrm{C}$!, So $<x_{n}>$ unbounded is $\left\langle x_{n}\right\rangle$ is divergent

Ex:
$>\quad<x_{n}>=<\sqrt{n-1}>=$
$0, \sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots$ unbounded $\left.\Rightarrow<x_{n}\right\rangle$ divergent
$>\quad<x_{n}>=<n^{2}-n>=$
$0,2,6,11, \ldots$ unbounded $\Rightarrow<x_{n}>$ divergent

LCH (16)

Definition: Let $<x_{n}>$ be a real sequence. Then it is called

- Non - decreasing. If $x_{n+1} \geq x_{n}, \forall n$
- Non - increasing. If $x_{n+1} \leq x_{n}, \forall n$.
- Not monotone. If it does not increasing and decreasing.

Ex:

$$
\begin{aligned}
* & <x_{n}>=\left\langle\frac{1}{\sqrt{n}}>\right. \\
& x_{n}=\frac{1}{\sqrt{n}}, x_{n+1}=\frac{1}{\sqrt{n+1}} \\
& \forall n, n+1>n \Rightarrow \sqrt{n+1}>\sqrt{n} \rightarrow \frac{1}{\sqrt{n+1}} \leq \frac{1}{\sqrt{2}} \rightarrow \\
& x_{n+1} \leq x_{n} \\
& \therefore<x_{n}>\text { is non }- \text { increasing }
\end{aligned}
$$

$$
\begin{aligned}
* & <x_{n}>=\left\langle\frac{n}{n+1}\right\rangle \\
& x_{n}=\frac{n}{n+1}, x_{n+1}=\frac{n+1}{n+2} \\
& x_{n+1}-x_{n}=\frac{n+1}{n+2}-\frac{n}{n+1}=\frac{(n+1)-n(n+2)}{(n+1)(n+2)}= \\
& \frac{n^{2}+2 n+1-n^{2}-2 n}{(n+1)(n+2)}=\frac{1}{(n+1)(n+2)}>0
\end{aligned}
$$

$$
\therefore x_{n+1}-x_{n}>0 \rightarrow x_{n+1}>x_{n}, \forall n, \therefore<x_{n}>\text { non }-
$$ decreasing

$\left.*<x_{n}\right\rangle=<(-1)^{n}>$ not monotone $*<x_{n}>=<\frac{(-1)^{n}}{\sin (n)}>$ not monotone.
$\left.*<x_{n}\right\rangle=<(-5)^{n}>$ not monotone.
Theorem: Every monotone bounded real seq. is convergent

Ex: $\left\langle x_{n}\right\rangle=\left\langle\frac{(-1)^{n}}{n}\right\rangle>0$
$<x_{n}>$ Convergent seq. but not monotone.
Ex: Show that $x_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{n+n}$ is convergent.
Theorem: Let (X, d) be a metric space and $S \subseteq X$:
i. If $<x_{n}>$ seq. in S and $x_{n} \rightarrow x$ then $x \in S$ or $x \in S^{\prime}$
ii. If $x \in S$ or $x \in S^{\prime}$, then there exists a sequence $<x_{n}>$ in S s.t $x_{n} \rightarrow x$

Definition: The sequence $<x_{n}>$ is a sub sequence of $<x_{n}>$, if $<m>$ is increasing sequence in N .

Ex: find a sub Seq. of the following seq.
$1 .\left\langle x_{n}\right\rangle=\langle\sqrt{n}\rangle$
Solution:

$$
<\sqrt{n}>=\sqrt{1}, \sqrt{2}, \sqrt{3}, \ldots
$$

LEC (17)

Let $<m>=<2 n>$ increasing Seq. in N, the Sequence is

$$
<X m>=<\sqrt{2 n}>=\sqrt{2}, \sqrt{4}, \sqrt{6}, \ldots
$$

Let $<m>=<n+3>$ increasing seq in N , the sub seq is

$$
<m>=<\sqrt{n+3}>=\sqrt{4}, \sqrt{5}, \sqrt{6}, \ldots
$$

Theorem: Let $<x_{n}>$ be a convergent Seq and $\lim _{n \rightarrow \infty} X_{n}=x$ then the sub seq $<X_{n m}>$ also conv. To x, where $n \rightarrow \infty$

Proof:
Since $x_{n} \rightarrow x, \forall \epsilon>0, \exists k \in N$ s.t $d\left(x_{n}, x\right)<$ $\epsilon, \forall n>k$
Choose $n r>k$, then $\forall m>r \rightarrow n m>n r>k$
$\Rightarrow d\left(x_{n m}, x\right)<\epsilon, \forall n m>k$
$\Rightarrow<x_{n m}>\rightarrow x$.
Definition: Let (X, d) be a metrices space and $\left.<x_{n}\right\rangle$ be a seq. in X we say that
$<x_{n}>$ is a principle. (Caushy) seq. if $\forall \epsilon>0, \exists k \in$ N s.t $d\left(x_{n}, x_{m}\right)<\epsilon, \forall n, m>k$.

Ex: prove that $<\frac{1}{n}>$ is Caushy seq in R ?
Solution: $\forall \epsilon>0$, to find $k \in N$ s.t $d\left(x_{n}, x_{m}\right)<$ $\epsilon, \forall n, m>k, \forall n, m>k$.

Let $m>n \rightarrow d\left(x_{n}, x_{m}\right)=\left|\frac{1}{n}-\frac{1}{m}\right| \leq\left|\frac{1}{n}\right|+\left|\frac{1}{m}\right|<\frac{1}{n}+$ $\frac{1}{n}=\frac{2}{n}$
Since $\epsilon>0$ (by Arch. Prop) $\rightarrow \exists k \in N$ s.t
$k \epsilon>2 \rightarrow \frac{2}{k}<\epsilon$
$\forall n>k, d\left(x_{n}, x_{m}\right)=\left|x_{n}-x_{m}\right|<\frac{2}{n}<\epsilon, \forall n, m>$ $k \rightarrow\left\langle X_{n}>\right.$ is Caushy seq.

Theorem: I metric space (X, d), every Convergent seq. is Caushy.

Remark: The Converse of the above theorem. Is not true by the following example.
Ex: Let $X=I R^{++}$positive numbers $d(x, y)=$ $|x-y|, \forall x, y \in R^{++}, \forall n>k$.
$<x_{n}>=<\frac{1}{n}>$ is Caushy seq.
But $\frac{1}{n} \rightarrow 0 \notin R^{++}$
$\therefore<\frac{1}{n}>$ is not Conv
Theorem: In metric Space (x, d) every Caushy seq. is bounded.

Ex: Let $\left\langle x_{n}\right\rangle=(-1)^{n}$ be a seq.
$<x_{n}>$ is bounded seq, but not Caushy Seq
Since $d(-1,1)=1<\epsilon, \forall \epsilon>0$
If $\epsilon=\frac{1}{2} \rightarrow 2<\frac{1}{2} \rightarrow C$!
Theorem: For any real number r, \exists rational Caushy Seq $<x_{n}>$ Conv to r.

LEC (18)

Definition: $\operatorname{Let}(X, d)$ be a metric space we say that X is Compete. If every Cauchy Seq.

In X coverage to a point in X .
i.e.: X is complete. If $\forall<X_{n}>$ Cauchy Seq.
$\rightarrow \exists \bar{x} \in X$ s.t $X_{n} \rightarrow X$.

Theorem: Cantor's theorem for Nested sets. Proof:

Let (X, d) be a Complete matric Space and $\left\langle E_{n}\right\rangle$ be a seq of closed bounded Subset of X such that $E_{1} \supset E_{2} \supset \cdots E_{n} \supset E_{n+1} \forall n$ and the Sequence of Positive numbers $<\operatorname{daim} E_{n}>\rightarrow 0$, then $\cap E_{n}=$ Singleton point

Remark: The condition of closed sets of Cantor's theorem is necessary.

Ex: Let $E_{n}=\left(0, \frac{1}{n}\right)$ be the open intervals, $E_{n+1} \subset E_{n}$, and $\operatorname{daim}\left(E_{n}\right)=\frac{1}{n} \rightarrow 0, \forall n \quad E_{n}$ is bounded and not closed. Prove that $\cap E_{n}=\varnothing$ Proof:

Suppose $\cap E_{n} \neq \emptyset \rightarrow \exists r \in E_{n}$ s.t
$r \in\left(0, \frac{1}{n}\right), \forall n$
Since $r>0$, by Arch.pvop , $\exists k \in N$ s.t
$k r>1 \rightarrow \frac{1}{k}<r \rightarrow C$!
$\rightarrow \quad \cap E_{n}=\varnothing$
Corollary: Let $< \pm n>$ be aseq of closed intervals,
$I_{n}=\left[a_{n}, b_{n}\right]$ such that

1. $I_{n} \supset I_{n+1}$
2. $\lim _{n \rightarrow \infty}\left|I_{n}\right|=0$, then $\cap I_{n}=$ singleton Point

Theorem: R^{n} is Complete metric Space, $n \geq 1$
i.e.: (Every Cauchy sequence in R^{n} is Convergent)

Theorem: Let $<X_{n}>,<Y_{n}>$ and $<Z_{n}>$ real Sequence s.t $\forall n, X_{n} \leq Y_{n} \leq Z_{n}$ and

$$
\lim _{n \rightarrow \infty} X_{n}=\lim _{n \rightarrow \infty} Z_{n}=a \text { then }
$$

$\lim _{n \rightarrow \infty} Y_{n}=a$

Theorem: let $\left\langle X_{n}\right\rangle$ be a real sequence such that $\left\langle X_{n}\right\rangle$ Converge to 0 and

$$
X_{n} \geq 0, p>0 \text { then }<X_{n}^{p}>\text { converges to } 0
$$

Proof:

$$
\begin{aligned}
& <X_{n}^{p}>=x_{1}^{p}, x_{2}^{P}, x_{3}^{p}, \ldots \\
& \text { Since }<X_{n}>\rightarrow 0 \rightarrow \forall \epsilon>0, \exists k \in N \text { s.t } \\
& \left|X_{n-0}\right|=\left|X_{n}\right|<\epsilon^{p}, \forall n>k \text { and } \\
& \left|X_{n} \cdot X_{n} \ldots X_{n}\right|=\left|X_{n}\right|\left|X_{n}\right| \ldots \ldots\left|X_{n}\right|=\left|X_{n}\right|^{p}< \\
& \left(\epsilon^{\frac{1}{p}}\right)^{p}, \forall n>k \\
& <X_{n}^{p}>\rightarrow 0 .
\end{aligned}
$$

وفي الختام نسأل الله التوفيق

اللهم قني عذابك
يوم تبعث عبادك

